导航:首页 > 铁皮石斛 > 铁皮石斛果糖和甘露糖代谢途径

铁皮石斛果糖和甘露糖代谢途径

发布时间:2021-10-18 15:55:53

㈠ 果糖,半乳糖,甘露糖如何进行代谢分解,产生ATP如何

果糖可以直接成为1,6-二磷酸果糖,从而进入糖酵解过程。果糖实际上比葡萄糖更容易被代谢,因为它可以绕过糖酵解的限速酶,磷酸果糖激酶
半乳糖的代谢主要在肝脏内进行,其过程如图。
甘露糖也是经过酶的作用成为葡萄糖进入糖酵解

㈡ 请问,铁皮石斛金钗石斛的化学成分及药效

石斛(学名:Dendrobium nobile Lindl),又名仙斛兰韵、不死草、还魂草、紫萦仙株、吊兰、林兰、禁生、金钗花等。茎直立,肉质状肥厚,稍扁的圆柱形,长10~60厘米,粗达1.3厘米。药用植物,性味甘淡微咸,寒,归胃、肾,肺经。益胃生津,滋阴清热。用于阴伤津亏,口干烦渴,食少干呕,病后虚热,目暗不明。石斛花姿优雅,玲珑可爱,花色鲜艳,气味芳香,被喻为“四大观赏洋花”之一。
铁皮石斛是石斛中的极品,具有独特的养阴生津效果,受到历代医家和医学典籍的推崇。2010年10月1日起实施的2010年版《中华人民共和国药典》新增了铁皮石斛单列标准,改写了铁皮石斛没有国家标准的历史。在新版药典中,增加了铁皮石斛薄层色谱鉴别、甘露糖与葡萄糖峰面积比及杂质、水分、总灰分、浸出物等检查项目,并制定了多糖与甘露糖含量测定方法,制定出具有专属性的鉴别与质量可控的含量测定方法。新的标准不仅能够检测出铁皮石斛的真伪,还能进一步控制和鉴别铁皮石斛的质量好坏。
【主要化学成分】
石斛含石斛碱、石斛胺、石斛次碱、石斛星碱、石斛因碱、6-羟石斛星碱,尚含粘液质、淀粉。细茎石斛含石斛碱、石斛胺及N-甲基石斛碱(季铵盐)。罗河石斛含石斛宁碱。
【石斛的故事】
在我国,少数民族众多,石斛民俗作为一种文化现象,它源于自然、源于生活,是先民在长期与大自然的接触中逐步形成和成长起来的。在云南的傣族地区,人们对花尤为崇拜,石斛以其性能和特征,被当地人所崇敬,它寄托了傣族人民美好的愿望与情感,人们将它种植于自家的房顶上,而且都是些非常显眼的地方,如房顶中央,房檐的拐角处,这为傣家竹楼增添了一道亮丽的风景,同时也形成了石斛的特色栽种。追其根源,这一特色栽种源于一个古老的传说。相传在傣历新年(泼水节)的第三天,隆重的“赶摆”之日,至高无尚的太阳神将来到人间查看民情,了解百姓的生活,给人们带来新生和希望。为此,傣族人民对太阳神万分感激,当太阳神要离去时,出现了一位美丽的人间女神,手捧着金色灿烂的“蛋花”(石斛)跪到太阳神面前,将“蛋花”作为礼物送给太阳神,从此,这花便成了吉祥之物、喜庆之物,之后,傣家人民便不惜险阻地从深山中把“蛋花”取回家里,栽于阳光最易照射到的地方一屋顶,等到四月新年时,好让它们开出一串串一年仅能灿烂一次的美丽花朵,以迎接新年,迎接太阳神的到来。爱美的傣家姑娘也都纷纷把“蛋花”取下,作为头饰或衣饰,插在自己的头上或衣物上,表示着对太阳神的期待和对未来美好、幸福的期待。在国外,石斛被认为“秉性刚强,忠厚可亲”,它有着“欢迎你,亲爱的”花语,并且在每年6月19日时,人们都将石斛兰送给父亲,故石斛又被称为“父亲节之花”。

㈢ 请问糖酵解途径过程

基本途径在细胞液中进行,可分为两个阶段。第一阶段从葡萄糖生成2个磷酸丙糖,第二阶段从磷酸丙糖转化为丙酮酸,是生成ATP的阶段。糖酵解途径的过程

糖酵解途径(glycolytic pathway)是指细胞在胞浆中分
糖酵解
解葡萄糖生成丙酮酸(pyruvate)的过程,此过程中伴有少量ATP的生成。在缺氧条件下丙酮酸被还原为乳酸(lactate)称为糖酵解。有氧条件下丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O。(一)葡萄糖的运输葡萄糖不能直接扩散进入细胞内,其通过两种方式转运入细胞:一种是与Na+共转运方式,它是一个耗能逆浓度梯度转运,主要发生在小肠粘膜细胞、肾小管上皮细胞等部位;另一种方式是通过细胞膜上特定转运载体将葡萄糖转运入细胞内,它是一个不耗能顺浓度梯度的转运过程。目前已知转运载体有5种,其具有组织特异性如转运载体-1(GLUT-1)主要存在于红细胞,而转运载体-4(GLUT-4)主要存在于脂肪组织和肌肉组织。(二)糖酵解过程糖酵解分为两个阶段共10个反应,每个分子葡萄糖经第一阶段共5个反应,消耗2个分子ATP为耗能过程,第二阶段5个反应生成4个分子ATP为释能过程。
⒈第一阶段
⑴葡萄糖的磷酸化(phosphorylation of glucose)
进入细胞内的葡萄糖首先在第6位碳上被磷酸化生成6-磷酸葡萄糖(glucose 6 phophate,G-6-P),磷酸根由ATP供给,这一过程不仅活化了葡萄糖,有利于它进一步参与合成与分解代谢,同时还能使进入细胞的葡萄糖不再逸出细胞。催化此反应的酶是己糖激酶(hexokinase,HK)。己糖激酶催化的反应不可逆,反应需要消耗能量ATP,Mg2+是反应的激活剂,它能催化葡萄糖、甘露糖、氨基葡萄糖、果糖进行不可逆的磷酸化反应,生成相应的6-磷酸酯,6-磷酸葡萄糖是HK的反馈抑制物,此酶是糖氧化反应过程的限速酶(rate limiting enzyme)或称关键酶(key enzyme)它有同工酶Ⅰ-Ⅳ型,Ⅰ、Ⅱ、Ⅲ型主要存在于肝外组织,其对葡萄糖Km值为10-5~10-6M
Ⅳ型主要存在于肝脏,特称葡萄糖激酶(glucokinase,GK),对葡萄糖的Km值1~10-2M,正常血糖浓度为5mmol/L,当血糖浓度升高时,GK活性增加,葡萄糖和胰岛素能诱导肝脏合成GK,GK能催化葡萄糖、甘露糖生成其6-磷酸酯,6-磷酸葡萄糖对此酶无抑制作用。
⑵6-磷酸葡萄糖的异构反应(isomerization of glucose-6-phosphate)
这是由磷酸己糖异构酶(phosphohexose isomerase)催化6-磷酸葡萄糖(醛糖aldose sugar)转变为6-磷酸果糖(fructose-6-phosphate,F-6-P)的过程,此反应是可逆的。
⑶6-磷酸果糖的磷酸化(phosphorylation of fructose-6-phosphate)
此反应是6磷酸果糖第一位上的C进一步磷酸化生成1,6-二磷酸果糖,磷酸根由ATP供给,催化此反应的酶是磷酸果糖激酶1(phosphofructokinase l,PFK1)。
PFK1催化的反应是不可逆反应,它是糖的有氧氧化过程中最重要的限速酶,它也是变构酶,柠檬酸、ATP等是变构抑制剂,ADP、AMP、Pi、1,6-二磷酸果糖等是变构激活剂,胰岛素可诱导它的生成。
⑷1.6 二磷酸果糖裂解反应(cleavage of fructose 1,6 di/bis phosphate)
醛缩酶(aldolase)催化1.6-二磷酸果糖生成磷酸二羟丙酮和3-磷酸甘油醛,此反应是可逆的。
⑸磷酸二羟丙酮的异构反应(isomerization of dihydroxyacetonephosphate)
磷酸丙糖异构酶(triose phosphate isomerase)催化磷酸二羟丙酮转变为3-磷酸甘油醛,此反应也是可逆的。
到此1分子葡萄糖生成2分子3-磷酸甘油醛,通过两次磷酸化作用消耗2分子ATP。
⒉第二阶段:
⑹3-磷酸甘油醛氧化反应(oxidation of glyceraldehyde-3-phosphate
此反应由3-磷酸甘油醛脱氢酶(glyceraldehyde 3-phosphatedehydrogenase)催化3-磷酸甘油醛氧化脱氢并磷酸化生成含有1个高能磷酸键的1,3-二磷酸甘油酸,本反应脱下的氢和电子转给脱氢酶的辅酶NAD+生成NADH+H+,磷酸根来自无机磷酸。
⑺1.3-二磷酸甘油酸的高能磷酸键转移反应
在磷酸甘油酸激酶(phosphaglycerate kinase,PGK)催化下,1.3-二磷酸甘油酸生成3-磷酸甘油酸,同时其C1上的高能磷酸根转移给ADP生成ATP,这种底物氧化过程中产生的能量直接将ADP磷酸化生成ATP的过程,称为底物水平磷酸化(substrate level phosphorylation)。此激酶催化的反应是可逆的。
⑻3-磷酸甘油酸的变位反应
在磷酸甘油酸变位酶(phosphoglycerate mutase)催化下3-磷酸甘油酸C3-位上的磷酸基转变到C2位上生成2-磷酸甘油酸。此反应是可逆的。
⑼2-磷酸甘油酸的脱水反应
由烯醇化酶(enolase)催化,2-磷酸甘油酸脱水的同时,能量重新分配,生成含高能磷酸键的磷酸烯醇式丙酮酸(phosphoenolpyruvate PEP)。本反应也是可逆的。
⑽磷酸烯醇式丙酮酸的磷酸转移
在丙酮酸激酶(pyruvate kinase,PK)催化下,磷酸烯醇式丙酮酸上的高能磷酸根转移至ADP生成ATP,这是又一次底物水平上的磷酸化过程。但此反应是不可逆的。
丙酮酸激酶是糖的有氧氧化过程中的限速酶,具有变构酶性质,ATP是变构抑制剂,ADP是变构激活剂,Mg2+或K+可激活丙酮酸激酶的活性,胰岛素可诱导PK的生成,烯醇式丙酮酸又可自动转变成丙酮酸。
编辑本段糖酵解途径总结在细胞液阶段的过程中,一个分子的葡萄糖或糖原中的一个葡萄糖单位,可氧化分解产生2个分子的丙酮酸,丙酮酸将进入线粒体继续氧化分解,此过程中产生的两对NADH+H+,由递氢体α-磷酸甘油(肌肉和神经组织细胞)或苹果酸(心肌或肝脏细胞)传递进入线粒体,再经线粒体内氧化呼吸链的传递,最后氢与氧结合生成水,在氢的传递过程释放能量,其中一部分以ATP形式贮存。
糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,是体内糖代谢最主要途径。

㈣ 糖代谢有哪些途径,每条途径的生理意义

机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径。

1、葡萄糖的无氧酵解

糖酵解可以把释放的自由能转移到ATP中。糖酵解也是果糖、甘露糖、半乳糖等己糖的共同降解途径。果糖及甘露糖通过己糖激酶的催化作用可转变成果糖-6-磷酸,果糖还可以通过一系列酶的作用转变成3-磷酸甘油醛。

2、有氧氧化

葡萄糖在有氧条件下,氧化分解生成二氧化碳和水的过程称为糖的有氧氧化,并释放出能量。有氧氧化是糖分解代谢的主要方式,大多数组织中的葡萄糖均进行有氧氧化分解供给机体能量。

3、磷酸戊糖途径

磷酸戊糖途径产生大量的NADPH,为细胞的各种合成反应提供还原剂(力),比如参与脂肪酸和固醇类物质的合成。

(4)铁皮石斛果糖和甘露糖代谢途径扩展阅读:

血糖的意义:

正常人体血糖浓度维持在一个相对恒定的水平,这对保证人体各组织器官的利用非常重要,特别是脑组织,几乎完全依靠葡萄糖供能进行神经活动,血糖供应不足会使神经功能受损,因此血糖浓度维持在相对稳定的正常水平是极为重要的。

正常人体内存在着精细的调节血糖来源和去路动态平衡的机制,保持血糖浓度的相对恒定是神经系统、激素及组织器官共同调节的结果。

神经系统对血糖浓度的调节主要通过下丘脑和自主神经系统调节相关激素的分泌。激素对血糖浓度的调节,主要是通过胰岛素、胰高血糖素、肾上腺素、糖皮质激素、生长激素及甲状腺激素之间相互协同、相互拮抗以维持血糖浓度的恒定。激素对血糖浓度的调节。

㈤ 果糖,半乳糖,甘露糖如何进行代谢分解,产生ATP如何

果糖可以直接成为1,6-二磷酸果糖,从而进入糖酵解过程。果糖实际上比葡萄糖更容易被代谢,因为它可以绕过糖酵解的限速酶,磷酸果糖激酶半乳糖的代谢主要在肝脏内进行,其过程如图。甘露糖也是经过酶的作用成为葡萄糖进入糖酵解

㈥ 果糖与甘露糖如何用化学方法来鉴定

加银氨溶液,甘露糖有醛基,可发生银镜反应,甲基葡萄糖苷没有醛基,无反应.

㈦ 机体正常血糖调节中涉及到葡萄糖代谢途径有哪些

机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径。

1、葡萄糖的无氧酵解

糖酵解可以把释放的自由能转移到ATP中。糖酵解也是果糖、甘露糖、半乳糖等己糖的共同降解途径。果糖及甘露糖通过己糖激酶的催化作用可转变成果糖-6-磷酸,果糖还可以通过一系列酶的作用转变成3-磷酸甘油醛。

2、有氧氧化

葡萄糖在有氧条件下,氧化分解生成二氧化碳和水的过程称为糖的有氧氧化,并释放出能量。有氧氧化是糖分解代谢的主要方式,大多数组织中的葡萄糖均进行有氧氧化分解供给机体能量。

3、磷酸戊糖途径

磷酸戊糖途径产生大量的NADPH,为细胞的各种合成反应提供还原剂(力),比如参与脂肪酸和固醇类物质的合成。

㈧ 微生物体内葡萄糖被降解的主要途径有几种各有什么特点

生物体中糖的氧化分解主要有3条途径:糖的无氧氧化、糖的有氧氧化和磷酸戊糖途径。其中,糖的无氧氧化又称糖酵解(glycolysis)。葡萄糖或糖原在无氧或缺氧条件下,分解为乳酸同时产生少量ATP的过程,由于此过程与酵母菌使糖生醇发酵的过程基本相似,故称为糖酵解。

催化糖酵解反应的一系列酶存在于细胞质中,因此糖酵解全部反应过程均在细胞质中进行。糖酵解是所有生物体进行葡萄糖分解代谢所必须经过的共同阶段。

反应特点

1、糖酵解反应的全过程没有氧的参与。

2、糖酵解反应中释放能量较少。糖以酵解方式进行代谢,只能发生不完全的氧化。

3、糖酵解反应的全过程中有3个限速酶。在糖酵解反应的全过程中。有三步是不可逆反应。这三步反应分别由己糖激酶、6-磷酸果糖激酶-1、丙酮酸激酶3个限速酶催化。

(8)铁皮石斛果糖和甘露糖代谢途径扩展阅读

生理意义

糖酵解可以把释放的自由能转移到ATP中。糖酵解也是果糖、甘露糖、半乳糖等己糖的共同降解途径。果糖及甘露糖通过己糖激酶的催化作用可转变成果糖-6-磷酸,果糖还可以通过一系列酶的作用转变成3-磷酸甘油醛。

半乳糖可以在一些酶催化下转变成1-磷酸葡萄糖。有些先天性代谢疾病是由于上述果糖与半乳糖代谢中的某些酶缺失所致。如缺失磷酸果糖醛缩酶,则果糖-1-磷酸在肝、肠及肾中堆积引起肝肿大及肝肾及肠吸收功能衰退,患这种病的儿童不能服用果糖或蔗糖。

㈨ 铁皮石斛甘露糖测定为什么要加pmp详解

加入PMP是为了衍生化反应,甘露糖不能被液相检测出来,加入 PMP后可与糖进行衍生化反应,生能够有紫外吸收的衍生物,从而被液相检测出来。

㈩ 果糖在体内能直接氧化分解得到能量吗

正常的糖代谢途径是通过消化和吸收将食物中的葡萄糖吸收进入血液循环,其他的单糖比如果糖,半乳糖,甘露糖在肠道被吸收以后,必须到肝脏被转化为葡萄糖才能正常的被代谢,所以果糖不会直接氧化分解。
满意请采纳~

阅读全文

与铁皮石斛果糖和甘露糖代谢途径相关的资料

热点内容
野生石斛多少钱一棵 浏览:873
石斛可不可以和茶叶一起泡水喝 浏览:42
采摘野生石斛图片 浏览:356
石斛花旗参孕妇可以喝吗 浏览:49
甲鱼石斛炖灵芝的做法大全 浏览:434
河南可以种植石斛吗 浏览:28
田七丹参石斛花旗参功效 浏览:875
新鲜铁皮石斛如何保存吗 浏览:761
铁皮石斛水鸭母炖汤 浏览:875
安徽霍山石斛食用方法 浏览:851
石斛炖鸡汤的的功效与作用 浏览:648
生松树皮怎样处理再可以种石斛 浏览:185
采集野生石斛图片 浏览:401
三七石斛粉一起服用吗 浏览:832
新鲜石斛出芽能吃吗 浏览:892
铁皮石斛与麦冬可以同煮吗 浏览:777
野生石斛市场价多少钱一市斤 浏览:351
感冒期间能服用铁皮石斛吗 浏览:908
霍山铁皮石斛茶叶 浏览:383
霍山石斛2020价格报价 浏览:404

友情链接